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SUMMARY 

Variational principles for elliptic boundary-value problems as well as linear initial-value problems have been 
derived by various investigators. For initial-value problems Tonti and Reddy have used a convolution type of 
bilinear form of the functional for the time-like coordinate. This introduces a certain amount of directional- 
ity thereby reflecting the initial-value nature of tire problem. In the present investigation the methods of 
Tonti and Reddy are used to derive the appropriate variational formulation for the transonic flow problem. A 
number of linear and non-linear examples have been investigated. As a test for the existence of directionality, 
finite-differences are used to discretize the variational integral. For initial-value problems of wave equation 
and diffusion equation type, fully implicit finite-difference approximations are recovered. The small-disturb- 
ance transonic equation leads to the Murman and Cole differencing theory ; when applied to the full potential- 
flow equations, the rotated difference scheme due to Jameson is obtained. 

1. I n t r o d u c t i o n  

The inviscid compressible-flow equations are of elliptic or hyperbolic type for sub- and super- 

sonic flows, respectively. Transonic flow is characterized by both and therefore a mixed system 

must be considered. Two classes of numerical techniques have been proposed for the solution 

of mixed differential equations. 

1. Based on the theory of positive symmetric partial differential equations, which are type 

independent,  a well-developed theory for linear partial differential equations, due to Friedrichs 

[1], is available. The differential equation is first reduced to a general form, which is type inde- 

pendent;  then, finite differences or finite-element discretization is used. Numerical computations 

for the two-dimensional Tricomi equation, using these methods, have been carried out by Kat- 

sanis [2], Lesaint [3] and Aziz and Leventhal [4]. The application to non-linear equations of 

mixed type does not appear to be straightforward. 

2. The second approach is a finite-difference method. Two distinct procedures for differen- 

cing the derivatives are specified for the equations in the elliptic and hyperbolic regions. These 

difference techniques are consistent with the boundary and initial conditions, and take into 

consideration the proper domain of dependence in the hyperbolic region. The application to 

* An extended version of this paper was first presented at tbe Bat-Sheva Intcrnational Seminar on Finite 
Elements for Non-Elliptic Problems, Tel-Aviv, Israel, July 1977. 
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the Tricomi equation and more general linear partial differential equations of the mixed type 

have been considered by Filippov [5] and Ogawa [6], respectively. Successful application of this 
method to the solution of the non-linear equations governing transonic flow has been developed 
to a reasonable degree of sophistication in the work of Murman and Cole [7] and Jameson [8]. 

The inability to formulate a variational principle for initial-value problems is due to the lack 
of a self-adjoint property, (see [4]) and has been known for quite some time. Gurtin [9] was the 
first to successfully formulate a variational principle for the heat-conduction equation by the 
convolution method. Although this approach has the advantage of implicitly incorporating the 
initial conditions, the resulting Euler-Lagrange equation is an integro-differential equation and 

therefore remains quite complex. Tonti [10], by incorporating a convolution type bilinear form, 
derived a variational principle for the diffusion equation. His method has been further extended 

to more general parabolic and hyperbolic equations by Reddy [11]. These variational principles 
are derived only for linear equations, but they do prepare the way for incorporating the neces- 
sary directionality required for the solution of the transonic-flow equations. 

For non-linear equations, the incorporation of the convolution-type bilinear form in the varia- 
tional formulation leads to the inverse problem of the calculus of variations for initial-value 
problems. The problem of finding a variational principle for a given operator has been solved by 
Vainberg [12]. Recently, it has been further elucidated by Atherton and Homsy [13]. The ope- 
rational formulas for an arbitrary number of non-linear differential equations have been derived 
to verify if a variational principle exists. 

In the present investigation the methods of Tonti [10] and Reddy [11] are used to derive the 
appropriate composite variational formulation, or in effect Galerkin method, for the transonic- 
flow problem. A number of linear and non-linear examples are also described. As a test for the 
existence of directionality, finite differences are used to discretize the variational integral. For 
initial-value problems described by the wave equation and diffusion equation, fully-implicit finite- 
difference approximations are recovered. The small-disturbance transonic analysis leads to the 
Murman and Cole [7] differencing theory; when applied to the full potential-flow equations, 
the rotated difference scheme due to Jameson [8] is obtained. 

In Section 2 a general summary of the inverse problem of the calculus of variations is given. 
Section 3 contains the application of these ideas to the wave equation and non-linear Burgers' 
equation. In Section 4 the application to the compressible-flow problem (small disturbance as 
well as full potential-flow equations) is presented. For additional examples and details, see [14]. 

2. General formulation 

Let L(u) be any operator. The inverse problem of variational calculus requires the construction 
of a functional F such that the linear Gateau differential o fF ,  i.e., the general derivative 6F = 0, 
leads to the Euler-Lagrange equations when L(u) = 0. This can be achieved, when it can be shown 
that L(u) is a potential operator. Toward this end, Vainberg's [12] theorem provides, as the ne- 
cessary and sufficient conditions for L(u) to be a potential operator, that the linear Gateau dif- 
ferential 6L(u) be symmetric. Therefore, if (A, B) represents the appropriate scalar product, 
then for L(u) to be a potential operator, 

(SL(u, ~) ,* )  = (SL (u, qO, ~). (1) 
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The functional F(u) can be given by 

F(u)=(u, fo' L( )dX) =fufo 1 L(ku)dXdV. 

Following Atherton and Homsy [13], we assume that the linear Gateau differential is uniformly 
continuous; i.e., the Fr6chet differential of the operator exists. Therefore, 

8F= ~e f (u + e¢) fo' LDt(u + ecb)]dXdV ] e=O " 

With the symmetry condition (1) and an integration by parts, we find 

8F =fL(u),dV, 

Since,(I) is arbitrary, 8F = 0 leads directly to 

L(u) = O, 

as the Euler-Lagrange equation. 
From (1), Atherton and Homsy [13] have developed a number of consistency requirements, 

which determine whether a given operator is in fact a potential operator. If the given operator is 
not a potential operator, Atherton and Homsy [13] have shown how a composite variational 
principle, or in effect a Galerkin method can be devised to provide L(u) = 0. The required func- 
tional F(u, v) is formed by introducing the adjoint variable o as: 

F(u, v) = (v, L(u)) =f vL(.)dV. 

Once again performing the operator derivative, 

d 
6F= ~ee f(V +e~)L(u + e~)dV e = 0 =f i lL(u)  + v"£1u(ee)]dV. (2) 

Integrating by parts, we obtain 

f f (3) 

where L u is the adjoint of the Fr~chet derivative of L(u). Since (I) and qJ are arbitrary functions 
the equations (2) and (3), with 6F = O, lead to 

L(u) = O, 

and 

L lu (v) = O. 
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Therefore one of the Euler-Lagrange equations leads to L(u) = 0. Finlayson [15] has noted the 
equivalence of this derivation with Galerkin procedures. For finite-element methods the exis- 
tence of a variational principle is not necessary; therefore, we will use the composite variational 
principle, with the appropriate integral formulation which leads to a finite-element treatment of 

the transonic- and supersonic-flow equations. 

In the following discussion, we will examine several equations of practical interest. We shall 
determine whether potential operators exist with respect to either of two scalar products; viz, 

(u,v) = faftt.° u(x, t)v(x, t)dtdx, (4) 

and 

Lf,  ° (5) 

In boundary-value problems t denotes a space variable, while for initial-value problems t corres- 
ponds to either time or a 'time-like' coordinate. It is the second scalar product (5) that has en- 
abled Tonti [10] and Reddy [11] to develop a consistent variational formulation for initial-value 
problems of heat-conduction or wave-propagation type. They only consider linear systems. 

In the next section, we shall re-examine the variational principles for the wave, heat-conduc- 
tion and non-linear Burgers' equations. We shall demonstrate that the proper formulation leads 

to the appropriate stable discrete forms of these equations in each case. The Fr6chet derivative 
and its classical analogue, the ordinary derivative, will be used interchangeably. Finally, finite- 

difference equations are derived, in each case, directly from the variational integral. The domain- 
of-dependence principle is satisfied immediately when the scalar product (5) is assumed for the 
wave equation. This leads to the retarded differencing commonly applied for transonic flows. 

Detailed discussions for sub-, trans- and supersonic flows are presented in Section 4. 

3. Examples 

In this section we will illustrate some of the general ideas outlined previously and show how the 
second form of scalar product defined by equation (5) is important in properly formulating the 

variational principle for initial-value problems. 

3.1 Wave equation 

Let us examine the wave equation 

dPtt-- C2~yy = 0 ,  

with respect to both scalar products (4, 5). It can be shown that the linear wave operator is a 
potential operator with respect to (4) and (5). Although, as pointed out by Reddy [11] and 
others, the initial conditions should be taken into account when formulating the functional. We 
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shall ignore the contribution from initial as well as boundary conditions in the present discus- 

sion. The functionals corresponding to (4) and (5) are, respectively, 

and 

- ( ~  - c 2 C~y)dtdy, FI - f f  

F2 =fro ° + c2d~y(t,Y)dPy(r,Y)]dtdy, 

(6a) 

(6b) 

where T = to -- t. 

I f  we replace • by • + eu, where u is some arbitrary function, the Fr6chet derivative, after 

integration by parts, leads to 

and 

~F 1 = 2 f f u(t ,  y )  [dPtt - C 2 dp yy ] dtdy, 

6F2 =f f {u(  t, y)[dPrr('G Y) - c2 dP yy(Z, y)] + u(r, y)[dP tt( t, y )  - e2 ~ yy(  t, y)]}dtdy. 

Since u is arbitrary, the Euler-Lagrange equation for both cases is given by 

dP tt ¢2 dp yy = 0. (7) 

We see that a variational principle exists for both scalar products; for the latter (6b) the concept 
of  domain of  dependence is implicitly taken into account. 

If  we consider a finite-difference discretization for the functionals F1 and F2, in lieu of  the 

usual discretization for the governing second-order wave equation (7), some interesting results 
are obtained. Let 

~i, j -  ~ i -  x j ~ i , / -  ~ i , / -  
~ t  = A t ; ~y - Ay ' (8a) 

where r = to - t ; Ar = - At ; i, j are the t- and y-grid indices, respectively, and to =NAt .  
Then 

(~T --- 
dP(T + A T )  - -  d~b(T) q b N - ( i + l )  - -  dPN-i dPN-i -- dPN-i-  1 

Ar --At A t  ' 

F 1 = ZE c2 , 1 A t A y ,  
# A t  

~.d~i,/~_dl)i- 1,/ digN i,/ -- f ~ N - i -  1,] 
F: = l At -St 

dPi,j -- dPi,j- 1 dPN- i,j -- dPN- i , j -  1~ A tAy. 
+ c2 Ay  A t 

J 

(8b) 

(8c) 
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If we now formally evaluate the Fr6chet derivative with respect to the discretized variable 

~Pi/, i.e., evaluate aFi,2/a~pi/, and if we define 

then 

o r  

F1 = ~..~ Jli/ A y A t  ;F2 = ~.~. J2i/ A y A t ,  
l] 11 

OF1 OJl 6 aJ 1// q a J1// # 
8i-1,1 + ~ 1 6i']-I , 

aFx _ _ cFi+ 1,1 - 2  cbi, / + cb i_ x ,/+ c2 ~i,/+ 1 _-2 t~i, j + dPi, j_ 1 
O~b i, / At:  A.y2 

Similarly, 

0F2 - 2  I ~ N - k ' j ' - - 2 C ~ N - k - l ' j  + ~ N - k - 2 ' J  C2 di)N-k'j+l--2dPN-k'j ÷ ~ N - k ' J - I  - . . . .  - 
Ocbk, j At 2 Ay 2 

If we redefine N - k  = i, then OFl/a~bi,/= 0 and 0F2/aepi,/= o lead to 

c~i+ 1 ,j --2 ~i,/ + cbi- ] ,/ 
A t 2 Ay2 

_ c2 ~bi,/+1-2cbi,/+~Pi,/- 1 
= 0 ,  ( 9 )  

and 

~Pi, j - 2  qbi- 1 ,j +dPi-2 ,/ 

At 2 Ay 2 
c2 ~i,/+1-2 cbi, / +cbi,/_ I _ O, (I0) 

respectively. Equation (9) is the central-difference analogue of the wave equation, while equa- 

tion (10) corresponds to a retarded differencing in the time direction. Equation (9)represents 
an explicit scheme, that is restricted by the CFL stability requirement, c A t / A y  _<_ 1. Equation 
(10) is an implicit finite-difference form of the wave equation and is unconditionally stable. 
The proper domain of dependence is automatically taken into account. It should be noted that 
the stable implicit scheme is a direct consequence of the scalar product (5) which provides the 
necessary directional property for the hyperbolic equations. It is also interesting that proper 
directionality is obtained by discretizing the functionals and then applying the differentiation. 
In this way, it is necessary to prescribe only the first-derivative difference approximations (8a). 
For more complex gas dynamic equations, this is a significant simplification. 

3.2 Burgers' equation 

The simplest model of a non-linear equation with diffusion and convection is given by Burgers' 
equation. It has been shown by Atherton and Homsy [13] that this equation does not satisfy 
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the requirements of  a potential operator. Thus a true variational formulation is not possible. 

However, one can use the composite variational principle, see Section 2. An appropriate func- 

tional which leads to 

Opt + ½(~P2)x = Vd~xx (11) 

as one of  the Euler-Lagrange equations of  the composite variational principle can be defined by 

F(u,  @) = (7", x) @t - "2 Ux + 1)@xUx d tdx ,  (12) 

where u is an adjoint variable. With the difference equations (8), we have F = ~.Z Ji jA t A x ,  where 
t l  

@2.. 
@i,] - @i- 1 ,] z, l uN - i,] - UN-  i , j -  1 

Jij = U N - i , j  A t  2 A x  

+V 
@i,j-- @i,j- 1 UN - i,j - UN - i , j -  1 

Ax Ax 

As we are interested in the discretized form of  the Burgers' equation, the Fr6chet derivative 
with respect to u is required. This leads to 

F@k, i  -- @k - 1 ,j @~,i+ l -- @~,/ 
6 F =  ZY.kj U g - k ' ]  L -~7 + 2"~ ;  

@k,j+ 1-2  @k,j + @k, i -  1.~ 
- v Ax 2 J 

Since u is arbitrary, we have 

2 @2 
@k,j -- @k-  1 ,/ @k,j+ 1 -- k,i @k,i+ 1 --2 @k,/+ @k,j-- l 

+ = v (13) 
At  2Ax  AX 2 

Equation (13) is the familiar implicit finite-difference form of  Burgers' equation. It can be seen 

that the convective term is only first-order accurate, although second-order accuracy is achieved 

for the diffusion derivative. 
At this stage, it should be noted that the differencing of  the space derivative is not unique 

and as an alternative to the backward difference (8), we could specify the forward spatial ap- 

proximation 

@i,j+ 1 - @i,j 
x (14) 

@ - Ax 

This flexibility is not available with the other coordinate (t) because of  its time-like character; 
only, backward differencing is physically acceptable. One can apply either type of  differencing 

Journal of  Engineering Math., Vol. 15 (1981) 185-200 



192 P. K. Khos la  and  S.G. R u b i n  

for multiple spatial coordinates as in elliptic equations. The use of equation (14) instead of the 
one given in (8) does not alter the final result for either the wave- or diffusion equations. How- 

ever, Burgers' equation (13) becomes 

~bk,/--  ~bk- l , i  dP2k,i -- ~b2k,/- 1 cbk,/+l --2q~k,i+l + O k , i -  a 
+ - v  (15) 

At 2Ax Ax 2 

By averaging (13) and (15) we recover the conservative central-difference form of Burgers' equa- 
tion. This is second-order accurate in space for both diffusion and convection. Uniform second- 
order accuracy in space and time can also be achieved by centering all terms in F at (i - ½, 
j - IA), see [16]. 

4. Transonic small-disturbance equations 

Steady transonic small-disturbance theory is governed by the equation 

[K - (7 + 1) Cbx]¢x: ̀  + ~yy = O,  (16) 

where 7 is the ratio of the specific heats and K is the transonic similarity parameter. For super- 
critical flows, local regions of supersonic flow with K < (3' + 1) ~x are created, thereby making 
equation (16) locally hyperbolic. Everywhere the problem is boundary-value in character, ex- 
cept in the supersonic bubble where it is initial-value like. Any discretization must take into 

account the directionality associated with the supersonic region, i.e., whenever, K < (~' + 1) ~x" 
We shall use the variational formulations previously described to discretize equation (16)in 

both subsonic and supersonic regions. 

4.1 Subson ic  region 

It can be shown that the operator (16) is potential and the appropriate functional is given as: 

F = f f r o  1 ¢bL(k¢ )d3 ,dxdy ,  

o r  

a 2 3 ePy ldxdy  (17) F = - ~ f f [ K O  x "r + 1 3 ePx + 

Recently, Geffen [17] has derived a similar variational principal in terms of the velocities u = ~x 
and v = ~y. From (17), the Euler-Lagrange equation (16) can easily be obtained. 
Now let 

c~i,j -- dPi,j- 1 c~i'] -- dP i - l ' /  " C~y (18) 
e~ x - A x  ' - A y 
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Substituting in (17), we obtain 

: 2+ A x A y .  = ~ K ~,+1 C ~ i , j - - ~ i - - l , j  q? i , j - -~P i - - l , j  c ~ i , j - - ~ i , j - 1  

F - :  i j 3 A x  -Ax A y  

Now 6F = 0 leads to 

IK- (7 1) qbi+l ,i -- ~ i -  1 ,_J] cI~i+l ,J -- 2~i,J+ ~i- 1 ,j + 
2Ax J Ax 2 

dPi,j+ 1 -- 2dPi, j t  ~ i , i -  1 
+ = 0. (19) 

Ay2 

If, instead of (18), we had used backward differences to approximate ~x and/or qby, equation 
(19) will remain unchanged. This is the central-difference form of equation (16). 

4.2 Supersonic region 

In this case, we are required to use the scalar product of the type given in equation (5). The 

operator (16) is not a potential operator. The composite variational principle can be easily es- 

tablished. If we define co as an adjoint variable, the appropriate functional is then given by 

IlK 7 + 1 eOr(~Zx) _ coydpyldxdy ' * ) :  f S f  ° - - 5 -  (20) 

where r = Xo - x and Xo is representative of the length of the supersonic region. Because of the 

time-like character of the coordinate x, ep x must be differenced in the backward direction. For 
• y one can use either forward or backward differences. Thus 

dPi,j -- dPi- 1 ,j CON-i,j -- CON-i-  1 ,j 

°P x = A x  ; COt = A x  ' 

dPi,j dPi,j-  1 c~i,j+ 1 -- ~ i , j  
~ Y -  Ay or  qby = Ay ; (21) 

CON-i,j CON-i , j -  1 C O N - i , j +  l - -  CON-i,j 
COY = A y  or  COy = Ay 

Substituting from equation (21) into equation (20) we obtain 

I ~i,] -- ~ i -  l , j  CON-i,] -- CON-i-  1,] 7 + 1 
F = E E  K 

i j Ax AX 2 
{ CON- i,j -- CON - i -  1 ,j 
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The derivative ~F/OCON_k, ] = 0 leads to 

IK "7+1 ~ k , i - - ~ k _ 2 , j 7  dPk, j - -2dPk- l , j+dPk-2 , j  

2 ~ ".] A x  = 

dPk,j+ 1 -- 2rbk,i + Oi'k,J- l 
+ = O. (22) Ay 2 

This is the retarded difference form of equation (16). Equations (19) and (22) were first pro- 
posed by Murman and Cole [7]. These equations are implicit and unconditionally stable. They 
are generally solved by relaxation methods. 

4.3 Complete compressible potential f low equations 

Although Bateman [18] and Lush and Cherry [19] have presented general variational formula- 
tions for potential flows, the composite variational principle dealing directly with the potential 
flow equation will achieve the same results. Greenspan and Jain [20] and Rasmussen and Heys 
[16] have obtained the discretized form of the potential-flow equations from the variational 
principle. The relationship of these results with central finite-differences appears to have been 
overlooked by these authors. It will be shown here that for subsonic flows, the discretized equa- 
tions derived either from Bateman's principle or the composite variational principle are in fact 
identical. For supersonic flows with the composite variational formulation, the retarded differ- 
ence formulas, obtained previously for the transonic small-disturbance equation, will be re- 
covered for the full compressible-flow equations. 

Subsonic f low 

Bateman's principle states that minimizing the pressure p ( q 2 )  with the functional 

F = f f p ( q 2 ) d x d y  (23) 

leads to the general potential equation of gas dynamics, 

( a= - U2) ~ x x  --2UVdPxy + ( a2 - V2) ~ y y  = O, (24) 

where q2 = u 2 + v 2 ; u = Cbx, v = qby, and a is the sound speed. We follow Greenspan and Jain 
[20] and discretize the equation (23). Let 

c~i+ l , i -- d~ i, j dPi,j+ l -- dPi, j 

4'x = Ax " ~y - Ay (25) 

Then 

E/ ¢°'"1°/'1] ~i+l , / -  ~a. 
F = ~ Z  p + A x A y ,  
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and Of/O~Pk,j = 0 leads to 

( P u ) k , j  - -  ( P u ) k  - l , j  ( P v ) k , j  - -  ( P v ) k , j - - 1  
+ = 0 .  ( 2 6 )  

Ax Ay 

In order to show that equation (26) is equivalent to the central-difference form of equation 

(24), we will use certain results from the calculus of difference operators. Let 

f i+ l , j  - -  f i ,  j f i , j + l  - -  f i ,  j + 

D x f  = A x  A y  

f , , J -  f~-  , ,j J},J - f , , i -  , 
D T f =  A x  ; D Y f =  A y  ' 

- + - 2fi j + fi  j ) /Ax2  D x D x  f =  (fi+~ , j  , - 1 ,  " 

Equation (25) is then equivalent to 

+q~; +q5 Ui, j = Dx ui, i = Dy . 

Equation (26) can now be written as: 

D x (Pu)k, j  + D f  (Pv)k,j  = O. 

Now (Pu)k, j  = (Pqqu)k , j  = (Pq)k, j  (qu)k,j  = -- (fl)k,j Uk,j, and (Pv)k,j  = -- (P)k,j Uk,j, 
where the following relationship for a perfect adiabatic gas has been applied 

(27) 

7P 
Pq = 7 pq = -Pq" 

Equation (27) then reduces to 

D x (PkdUh.,j) + D 7 (pk,jVk,j)  = O, 

or 

- + ~  + 
Dx (Pk,jDx k,i ) + Dy (pk, jDy 4Pk,j) = O. 

It is easy to prove that (see Miller [21]) 

D (fl'gi) =f t 'D-gi  + g i - 1 D - f i  ' 

D+(fiqi) = f}D+ gi + gi+ l D+fi" 

(28) 

(29) 
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With (29), equation (28) can be written as: 

Also 

Pk,jD x D+ ~ k,j ( D+ CP )k-  1 j (  D x Pk,j) 

- -  + + - -  

+ Pk j (DyDy  ¢Pkj)(D~ dP)k,j- 1 (Dy Pk,j) = O. 

(30) 

(D+'~)k - ' , i  = (Dx ~P)k,j, (D~CP)k,j-, = (D;  ~P)k,j, 

( D x P)k, ] = (pu)k j D  xUk,j + (Pv)k,jD xVk,j, 
(31) 

(Dyp)k,j  = (pu)k,jDyUk,j + (Po)k,jDyVk,i, 

Pu Pv 
(Pu)k,i =--(" '~) k,] ; (Pv)k,j = --(--~)k,j" 

Substituting from equation (3 l) into (30), we obtain 

[( Uk,j:Uk- l,J) [Uk- I,/Uk,] D+ 
Pk,] 1 a~,j DxD+Cbk'J - ~  a ~ -  Dx ydpk'] + 

k,] 
(32) 

+ a~,j DyDxCbk, ] + 1 a~,j DyDydPk, = O. 

The implicit nature (from the point of view of unconditional stability) and the central-difference 
form of the second derivatives is clear. The cross derivative is less accurate than its central-differ- 
ence form. The over-all accuracy of scheme (32) is less than its central-difference counterpart 
due to the lower accuracy of the first derivatives. As shown for Burgers' equation, mid-point 
differencing will provide second-order accuracy for all derivatives. 

As an alternate derivation, in lieu of Bateman's variational principle, we apply the composite 
variational principle to the continuity equation. The functional F is defined as 

F = f f tp .  wx, ov COy]dxdy, 

where co is the adjoint variable. The differentiation OF/Ocok, i = 0 leads to 

D- x (pg,/U k j )  + D y (pk,jVk,j) = O. 

This is precisely equation (28). 
On the other hand, if we use the following functional, derivable from equation (24), 
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the resulting difference equation will be given as 

u 2 

k ,]  _ + _ 1 - -5---ilDxDx~Pk,j Uk'jVk'J 
u k , j  t a k,~ 

- -  (DxD;cbk, j + DyD+xcbk,j) 

2 
_ + 

+ 1 -_ - -5  DyDy~k, j  = 0 
a k , i  ] 

This is similar to the final result (32) obtained from the Bateman variational principle. 

Supersonic flow 

In this case the flow is not aligned with any particular coordinate direction. The time-like direc- 
tion, characteristic of this initial-value problem, follows the stream line. A variational formula- 

tion in the natural coordinates is preferable. Once again a composite variational principle can be 
devised and a retarded-difference scheme in the natural coordinates is recovered. We shall use 

the relationships between the natural and cartesian coordinates to derive the difference form of 

the continuity equation in cartesian coordinates. The functional is given by, 

F = f  f [ -  Pqcor + 0 (pqco)n]dsdn (34) 

where ~ = so - s, p is the density, q the speed, s is the arc length along the stream line, n is the 

arc length normal to the stream line, 0 is the angle that the stream line makes with the x-axis, 

and co(p, n) is the adjoint variable. The Euler-Lagrange equation is given by 

(Pq)s +pqOn = O, (35) 

i.e., the continuity equation [22] in natural coordinates. The relationships between the cartesian 

and natural coordinates are as follows: 

- + - -  _ _  O n = + 

~s q ~x q ~Y'  x y 

These relations can be derived geometrically or by comparing the cartesian continuity equation 

with (35). 
Since s is the time-like direction, we approximate 

¢ O N - i , j  - -  CON i -  l , j  
cor = AX ' (36) 

Pi, jqi ,  j c o N -  i , j  -- f l i , j -  1 q i , j -  1 C ° N - i , j -  1 

(Pq~)~ = A y 
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Substituting from equation (36) in (34) and setting OF[~c.,dN_ k,j = 0 we obtain 

(Pq)k,j -- (Pq)k-  l , j  Ok,j+ l -- Ok,] 
+ Pk, jqk , j  = 0 ,  As An 

o r  (37) 

+ 
D~ [(Pq)g,]] + (Pq)k,jDnO k,j = O. 

With the discretized version of (35) or from geometric considerations, it can be shown that 

= - D ; f  k j q k,j oy f k ' !  
' \ q l k , j  ' 

and 

+ + + . 

DnOk'j  = Dx k , j  \ q J k , ]  

Substituting these relations in (37) we obtain 

( q )  Dx(pq)kj+(v~-- D y ( p q ) k j + .  "k(Pq] I D x ( q )  U + V 
k , ]  ' \ q J k , ]  ' , j  

(38) 

Finally, using solutions (29) in (38), we see that 

()( ) (v) ( qk;  l')o vk, u 1 qk j f l k - l , j  D~Uk,j+ 1 a 2 q k,j -- a 2 q k,i 
k , j  k,] 

k , j  ] " k , j  
(39) 

%,i'Uk+l,i~ + Vk ]Uk+I,i . vk,i+luk,] + 
- ,7 2 DxVk , j -  DyUk , j  + 1 qk~j ] D~uk'j ' - -  * 2 

~k,j qk,j 

Uk,jVk,j+l + 
+ 1 2 DyVk , j  = O. 

qk,j 

Apart from the first-order accuracy of the first-derivative coefficients in equation (39), the rela- 
tionship with Jameson's rotated difference scheme is apparent. The present variational formula- 
tion can be used to discretize mixed-type equations for more general element shapes. Although 

Apart from the first-order accuracy of the first-derivative coefficients in equation (39), the rela- 
tionship with Jameson's rotated difference scheme is apparent. The present variational formula- 
tion can be used to discretize mixed-type equations for more general element shapes. Although 
this has not been carried out in the present paper, there does not seem to be any obvious diffi- 
culty in extending the procedure to more general element shapes. 
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5. Summary 

1. A proper variational formulation can provide the appropriate implicit-difference equations 

for initial-value problems. 

2. The relationship of  the discrete equations, as obtained from Bateman's principle, with 

those o f  central finite-difference theory can be established; the lower-order accuracy of  Green- 

span and Jain's results has been noted,  and the use o f  averaging to improve the accuracy has 

been demonstrated.  

3. With the proper variational formulation for the initial-value problem, the small-disturb- 

ance transonic formulation leads to the Cole and Murman retarded-difference approximation.  

4. For  the full potential-flow equations, Jameson's  rotated difference scheme is recovered 

for supersonic flows, and the equivalence of  Bateman's true variational principle with the com- 

posite (Galerkin) variational formulation for subsonic flows has been demonstrated.  

5. The Murman-Cole or Jameson retarded-difference methods can be made second-order 

accurate by appropriate mid-point differencing of  the first-derivatives in the functional. The re- 

suiting equations for transonic small-disturbance theory have been derived previously, with an 

alternate procedure,  in reference (23). 

6. If  Jameson's  unsteady equations are considered, the present discretization procedure,  

with the appropriate composite variational principle, still applies. More desirable stability prop- 

erties for the iterative process result. Midpoint differencing in artificial or iterative time would 

increase the temporal accuracy and should effect the convergence rate. 
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